Friday, June 10, 2011

Transmission medium

A transmission medium (plural transmission media) is a material substance (solid, liquid, gas, or plasma) that can propagate energy waves. For example, the transmission medium for sound received by the ears is usually air, but solids and liquids may also act as transmission media for sound.
The absence of a material medium (the vacuum of empty space) can also be thought of as a transmission medium for electromagnetic waves such as light and radio waves. While material substance is not required for electromagnetic waves to propagate, such waves are usually affected by the transmission media they pass through, for instance by absorption or by reflection or refraction at the interfaces between media.
The term transmission medium can also refer to a technical device that employs the material substance to transmit or guide waves. Thus, an optical fiber or a copper cable is referred to as a transmission medium.
A transmission medium can be classified as a:
  • Linear medium, if different waves at any particular point in the medium can be superposed;
  • Bounded medium, if it is finite in extent, otherwise unbounded medium;
  • Uniform medium or homogeneous medium, if its physical properties are unchanged at different points;
  • Isotropic medium, if its physical properties are the same in different directions.
Coaxial Cable, one example of a transmission medium
Electromagnetic radiation can be transmitted through an optical media, such as optical fiber, or through twisted pair wires, coaxial cable, or dielectric-slab waveguides. It may also pass through any physical material that is transparent to the specific wavelength, such as water, air, glass, or concrete. Sound is, by definition, the vibration of matter, so it requires a physical medium for transmission, as does other kinds of mechanical waves and heat energy. Historically, science incorporated various aether theories to explain the transmission medium. However, it is now known that electromagnetic waves do not require a physical transmission medium, and so can travel through the "vacuum" of free space. Regions of the insulative vacuum can become conductive for electrical conduction through the presence of free electrons, holes, or ions.

No comments:

Post a Comment